Imaging Agents

DOI: 10.1002/ange.200901005

Symmetry-Guided Design and Fluorous Synthesis of a Stable and Rapidly Excreted Imaging Tracer for ¹⁹F MRI**

Zhong-Xing Jiang, Xin Liu, Eun-Kee Jeong, and Yihua Bruce Yu*

¹H and ¹⁹F are the most sensitive nuclei for nuclear magnetic resonance imaging (MRI), with the ¹H signal suited for collecting information about the body^[1,2] and the ¹⁹F signal suited for collecting information about drugs in the body.^[3,4] Although ¹⁹F MRI^[5] is only four years younger than ¹H MRI, ^[6] it is not in clinical use. The progress of ¹⁹F MRI has been stalled by the lack of suitable imaging agents. Current ¹⁹F imaging agents are perfluorocarbon (PFC) emulsions^[7–13] and suffer severe shortcomings, including heterogeneity, instability, split 19F signals, complex formulation procedure and, most importantly, excessive retention of the agent within organs for months or longer. [8,14] We developed a bispherical fluorocarbon molecule, denoted as ¹⁹FIT to stand for 19F imaging tracer, which overcame all the major deficiencies of PFC-based imaging agents. 19FIT, designed using the principle of modular spherical symmetry, is water soluble and emits a single ¹⁹F signal from 27 fluorine atoms. The in vivo residence half-life of ¹⁹FIT measured in mice is about 0.5 day, and no evidence of organ retention or in vivo degradation was found. Our result shows that modular symmetry is a useful strategy for designing molecules with multiple functionalities. With suitable imaging agents like ¹⁹FIT, ¹⁹F MRI has the potential to play an important role in drug therapy, analogous to the role played by ¹H MRI in disease diagnosis.

MRI has made significant contribution to medical diagnosis. [15] The value of MRI comes from its ability to collect in vivo information noninvasively without ionizing radiation. [16] ¹H and ¹⁹F are the most and second most sensitive

[*] Prof. Y. B. Yu

Department of Pharmaceutical Sciences University of Maryland, Baltimore MD (USA)

Fax: (+1) 410-706-5017 E-mail: byu@rx.umaryland.edu

Homepage: http://www.bioe.umd.edu/facstaff/yu.html

Dr. Z.-X. Jiang, Prof. Y. B. Yu

Fischell Department of Bioengineering University of Maryland, College Park (USA)

X. Liu

Department of Physics, University of Utah

Salt Lake City (USA)

Prof. E.-K. Jeong

Department of Radiology, University of Utah

Salt Lake City (USA)

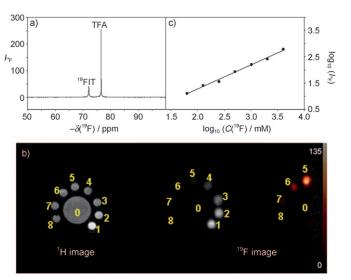
[***] This work was supported by NIH grants (EY015181 & EB004416), the Maryland Nano-Biotechnology Fund and the University of Utah seed incentive grant. We thank Dr. Yong-En Sun for assisting with animal handling. MRI = magnetic resonance imaging.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200901005.

stable nuclei for MRI, respectively. Because of the ubiquitous presence of the ¹H signal and the complete absence of the ¹⁹F signal in the human body, ¹H and ¹⁹F MRI complement each other in their information content. ¹H MRI is suited for collecting information about the body (anatomy, physiology, and biochemistry) and is therefore a valuable tool for disease diagnosis. ¹⁹F MRI, on the other hand, is a tracer-type technology and is suited for collecting information about drugs in the body (where, how much, and in what form), and therefore has the potential to become a valuable tool for image-guided drug therapy.

Direct monitoring of drugs by ¹⁹F MRI requires the drug to be labeled by appropriate ¹⁹F imaging agents. For more than three decades, PFC emulsions have been used as ¹⁹F imaging agents.^[5,7–13] However, PFC emulsions suffer severe drawbacks as imaging agents. First and foremost, PFCs are very lipophilic and accumulate excessively in internal organs (liver, spleen, lung) for months or longer. [8,14] Second, emulsion droplets are inherently heterogeneous, unstable, and likely to disintegrate inside the body. In fact, the in vivo integrity of PFC droplets is difficult, if not impossible, to verify. Third, linear PFCs emit multiple ¹⁹F signals because of the lack of symmetry. Signal splitting lowers signal intensity and can cause image artifacts. Macrocyclic PFCs (e.g., perfluoro[15]crown-5 ether (PF15C5)) will also emit multiple ¹⁹F signals if covalently modified because their cyclic symmetry will then be broken. Finally, the formulation of PFC emulsions is quite complex, requiring multiple surfactants and microfluidic devices. [11-13] Complex formulation brings a range of difficulties for industrial production and regulatory approval. Indeed, there is currently only one injectable emulsion, Diprivan, on the U.S. market.[17]

All the aforementioned shortcomings of PFC-based imaging agents can be avoided if a stable, hydrophilic molecule which emits a single 19F signal from multiple fluorine atoms can be developed. To achieve this goal, we employed a molecular design principle called modular spherical symmetry. A molecule with modular spherical symmetry comprises independent spherical cones joined by covalent bonds in the cone part. The fluorocarbon molecule ¹⁹FIT contains an F-spherical cone and an H-spherical cone (Figure 1). Spherical symmetry in the F-spherical cone ensures a single ¹⁹F signal from multiple fluorine atoms. Spherical symmetry in the H-spherical cone allows efficient incorporation of multiple hydrophilic groups. The advantage of spherical cones over macrocycles is that a spherical cone can be modified at the cone without breaking the symmetry of the sphere, whereas a macrocycle will lose its cyclic symmetry upon modification. ¹⁹FIT comprises three building blocks, **I**,


Zuschriften

$$(F_3C)_3CO) OH HN CO_2H H_2N(CH_2CH_2O)_4H CO_2H H_2N(CH_2CH_2O)_4H CO_2H H_2N(CH_2CH_2O)_4H CO_2H H_2N(CH_2CH_2O)_4H CONH(CH_2CH_2O)_4H CONH(CH_2CH_2O)_4H CONH(CH_2CH_2O)_4H TO CONH(CH_2CH_2O)_4H$$

Figure 1. Chemical structures of ¹⁹FIT and its three building blocks (I, II, and III). ¹⁹FIT is designed to be a bispherical cone. The F sphere contains 27 fluorine atoms for ¹⁹F signal generation. The H sphere, currently made of 4 OH groups, can be derivatized to COOH, NH_2 , and SH for future drug conjugation. ^[23]

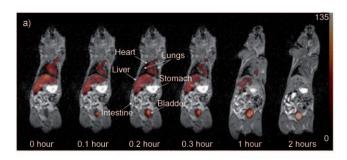
II, and III, with I being the ¹⁹F signal emitter, and III and III serving to enhance the aqueous solubility of the tracer (Figure 1). ¹⁹FIT was synthesized in a sequential manner which involved repetitive deprotection/condensation cycles (Scheme 1), analogous to solid-phase peptide synthesis. The synthesis proceeded from the F sphere to the H sphere so that all synthesis intermediates (2, I, and 3–7) contained nine CF₃ groups and could thereby be purified by using the unique separation power of fluorous chemistry. ^[18,19] The final product, ¹⁹FIT, was purified using a combination of fluorous silica gel chromatography and preparative HPLC methods (see Figure S1 in the Supporting Information).

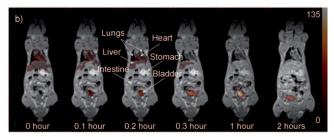
 19 FIT is soluble in phosphate-buffered saline (PBS, Figure S2) and emits a single 19 F signal from 27 fluorine atoms (Figure 2a). 19 F NMR study shows that 19 FIT forms micelles in PBS with a critical micelle concentration of approximately 7 mm (Figure S3). Phantom experiments show that the 19 F signal intensity is indeed proportional to 19 F concentration (Figure 2b and c). The 19 F longitudinal relaxation time, T_1 , of 19 FIT is much shorter than that of PF15C5 when measured under the same experimental conditions (163 ms versus 1069 ms). Even with 30 mol % of

Figure 2. a) ¹⁹F NMR spectrum of ¹⁹FIT in PBS. TFA is the internal ¹⁹F standard. b) ¹H and ¹⁹F MRI images of phantoms (1–8) filled with ¹⁹FIT in PBS. ¹⁹F concentrations in the phantoms are: 4050 mm, 2025 mm, 1012 mm, 506 mm, 253 mm, 126 mm, 63 mm, and 32 mm for phantoms 1–8, respectively. Phantom 0 contains water. ¹⁹F images of the phantoms were given in two color schemes: white/black (for high-concentration phantoms) and red/black (for low-concentration phantoms). c) Plot of log₁₀(I_{19} F) versus log₁₀(I_{19} F)).C= concentration.

relaxation-enhancing Gd^{3+} , the $^{19}\mathrm{F}$ T_1 value of PF15C5 reported in the literature $^{[11]}$ is still significantly longer than that of $^{19}\mathrm{FIT}$. The smaller T_1 value is yet another advantage of using $^{19}\mathrm{FIT}$ over PFCs as it reduces data collection time and thereby increases signal intensity. $^{[20,21]}$

A 150 mm ¹⁹FIT PBS solution was administered to 16-week-old BALB/c male mice at two dose levels: either 400 μL per mouse (ca. 60 mmol kg⁻¹ ¹⁹F), or 200 μL per mouse (ca. 30 mmol kg⁻¹ ¹⁹F). At both dose levels, the ¹⁹F signal decreased rapidly and became invisible in all organs, except the bladder, after 1–2 hours (Figure 3 and Figure S4). The ¹⁹F signal intensity also decreased rapidly in whole-body ¹⁹F spectra and in urine samples collected from mice injected


 $(F_3C)_3CO$ (F₃C)₃CO (F₃C)₃CO $(F_3C)_3CO'$ **3**: $R^1 = tBu'$ 99% 99% CO₂R¹ CONH(CH2CH2O)4R2 CONH(CH2CH2O)4R CO₂R¹ (F₃C)₃CO (F₃C)₃CO d (F₃C)₃CO CO₂R¹ CONH(CH₂CH₂O)₂R (F₃C)₃CO 99% 97% CONH(CH2CH2O)4R2 6: R1 = H


Scheme 1. The synthesis of ¹⁹FIT. Reaction conditions: a) KH, BrCH₂CO₂tBu, THF, RT, 12 h; b) TFA, anisole, CH₂Cl₂, RT, 2 h; c) DIC, HOBt, DMF/THF (1:1), HN(CH₂CO₂tBu)₂ (=II-(tBu)₂), RT, 12 h; d) DIC, HOBt, DMF/THF (1:1), H₂N(CH₂CH₂O)₄Bn (=III-Bn), RT, 18 h; e) H₂, Pd/C, MeOH, RT, 12 h. TFA=trifluoroacetic acid, DIC=1,3-diisopropylcarbodiimide, HOBT=1-hydroxytriazole, DMF=N,N'-dimethylformamide, THF=tetrahydrofuran Bn=benzyl.

with ¹⁹FIT (Figure 4 a and Figure S5). On the basis of the 19F signal intensity decays of both the whole-body urine samples, in vivo residence halflife, $t_{1/2}$, of ¹⁹FIT is estimated to be approximately 0.5 day. In comparison, the in vivo residence half-lives of perfluorocarbons, also determined by 19F MRI, are months or longer. [8]

Whole-body

19F spectra in different mice showed only one
19F peak at all time

Figure 3. Superimposed 1 H (white) and 19 F (red) images (coronal view) of mouse 1 (a) and 3 (b). Mice 1 and 3 were injected with 400 μL (60 mmol kg $^{-1}$ 19 F) and 200 μL (30 mmol kg $^{-1}$ 19 F) of 150 mm 19 FIT PBS solution, respectively. For images beyond 2 h, see Figure S4.

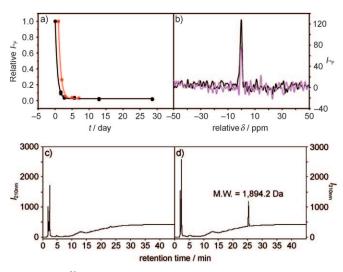


Figure 4. a) ¹⁹F signal intensity decay with time. Black symbols: wholebody ¹⁹F signals from mice 1 and 2 collected using a 3.0 T clinical magnetic resonance scanner. Red symbols: mouse 6 urine ¹⁹F signal collected using an 11.7 T NMR spectrometer. For each series, the first data point is normalized to one. The curves are fitting data to single-component exponential decay. b) In vivo ¹⁹F spectra for mouse 1 at 8220 min (black) and mouse 3 at 8880 min (pink). The maximum position of each signal is manually set to 0 ppm. The ratio of the two signal intensities is 2.08, about the same as the dose ratio between these two mice, which is 2.0. For more in vivo ¹⁹F spectra, see Figure S6. c, d) HPLC chromatograms of urine collected from mouse 6 one day before (c) and one day after (d) receiving ¹⁹FIT.

points (Figure 4b and Figure S6). There is also only one ¹⁹F peak in all urine samples, having the same chemical shift as ¹⁹FIT (Figure S7). A comparison of the HPLC profiles of the urine samples collected before and after the injection of ¹⁹FIT showed only one peak, which was attributable to

fluorinated compounds (Figures 4c and d). The mass of this peak is 1894.2 Da, the same as intact ¹⁹FIT. All these results are consistent with no in vivo degradation of ¹⁹FIT. Mice injected with ¹⁹FIT were observed for up to 45 days and showed no sign of acute toxicity or weight loss.

In summary, ¹⁹FIT overcomes major deficiencies of PFC-based ¹⁹F imaging agents, including heterogeneity, instability, split ¹⁹F signals, large ¹⁹F T_1 values, complex formulation, and, most importantly, excessive retention of the tracer within the organ. With suitable imaging agents, ¹⁹F MRI has the potential to play an important role in drug therapy, analogous to the role played by ¹ MRI in disease diagnosis. From a chemistry standpoint, bispherical symmetry is a step forward from the unispherical symmetry employed in conventional dendrimer design. ^[22] In fact, modular symmetry is a general molecular design principle that can be extended to trispherical symmetry and beyond.

The application of ¹⁹FIT to drug or cell monitoring using ¹⁹F MRI still faces stiff challenges. One issue is sensitivity. The approach of using symmetry to generate a single ¹⁹F signal from multiple fluorine atoms can only go so far, on the order of 100 fluorine atoms. Other approaches, such as using paramagnetic ions to reduce the T_1 and T_2 values of $^{19}\mathrm{F}^{[11,20,\bar{2}1]}$ are needed. Another issue is a dilemma common to all labeling tags; if the labeling is noncovalent, then the tag might dissociate from the drugs or cells, and signals from free and bound tags can hardly be distinguished. However, if the labeling is covalent, then the tag might alter the bioactivity of drugs or cells. One possible solution to this dilemma is to use the prodrug approach, that is, making ¹⁹FIT-drug into a prodrug which replaces the free drug as the therapeutic agent. The pharmacologically inactive ¹⁹FIT-drug will be converted into the active free drug at the pathological site (e.g., tumor). The pharmacokinetics of 19FIT can be monitored with ¹⁹F MRI right up to the point where ¹⁹FIT-drug is converted into the free drug at the disease site, with the $^{19}\text{FIT-drug}\!\rightarrow$ ¹⁹FIT + drug conversion process monitored by ¹⁹F MRS. We are currently pursing these approaches.

Experimental Section

Synthesis of ¹⁹FIT:

$$\mathbf{1} \xrightarrow{a} \mathbf{2} \xrightarrow{b} \mathbf{I} \xrightarrow{c} \mathbf{3} \xrightarrow{b} \mathbf{4} \xrightarrow{c} \mathbf{5} \xrightarrow{b} \mathbf{6} \xrightarrow{d} \mathbf{7} \xrightarrow{c} \mathbf{19} \text{FIT}$$
 (1)

tert-Butyl monoester 2 (procedure a): A suspension of potassium hydride (30%, 3.2 g, 24.0 mmol) was added slowly to a stirred solution of alcohol $\mathbf{1}^{[23]}$ (15.8 g, 20.0 mmol) in tetrahydrofuran (200 mL) at 0°C. After 10 min, tert-butyl bromoacetate (5.9 mL, 7.8 g, 40.0 mmol) was added to the suspension in one portion at RT and the resulting mixture was stirred at RT overnight. After the reaction mixture had been quenched with water (20 mL), the mixture was transferred into a separatory funnel and the lower phase was collected as a clear oil. The low-boiling-point impurities were then removed under vacuum and the monoester 2 was obtained as a clear oil (14.1 g, 78 % yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.14$ (s, 6 H), 3.91 (s, 2H), 3.57 (s, 2H), 1.46 ppm (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -73.51 \text{ ppm (s)}$; ¹³C NMR (100.7 MHz, CDCl₃): $\delta =$ 168.5, 120.2 (q, J = 293.4 Hz), 81.8, 79.1–80.0 (m), 69.2, 67.2, 66.2, 46.1, 27.9 ppm; MS (ESI) *m/z* 905 ([*M*+1]⁺); HRMS (MALDI-TOF) calcd for $C_{23}H_{20}F_{27}O_6$ 905.0829, found 905.0823.

Zuschriften

Monoacid **I** (procedure b): Trifluoroacetic acid (30 mL) was added to a stirred solution of *tert*-butyl ester **2** (13.6 g, 15.0 mmol) and anisole (3.0 mL) in dichloromethane (100 mL) at RT, and the resulting solution was stirred at RT for 2 h. After the reaction mixture was evaporated to dryness under vacuum, the residue was dissolved in methanol/toluene (50 mL:30 mL) and evaporated to dryness under vacuum to give the monoacid **I** as a reddish oil (12.6 g, 99 % yield) which was used in the next step without further purification. ¹H NMR (400 MHz, [D₆]acetone): δ = 4.29 (s, 6H), 4.14 (s, 2H), 3.73 ppm (s, 2H); ¹⁹F NMR (376 MHz, [D₆]acetone): δ = -71.24 ppm (s); ¹³C NMR (100.7 MHz, [D₆]acetone): δ = 170.9, 121.2 (q, J = 292.5 Hz), 80.1–81.0 (m), 68.6, 67.5, 67.1, 47.1 ppm; MS (ESI) m/z 848 [M⁺]; HRMS (MALDI-TOF) calcd for $C_{19}H_{12}F_{27}O_6$ 849.0203, found 849.0197.

Monoamide 3 (procedure c): 1,3-Diisopropylcarbodiimide (6.6 mL, 5.4 g, 42.5 mmol) was added to a stirred solution of 1hydroxytriazole (5.7 g, 42.5 mmol) and acid I (12.0 g, 14.2 mmol) in dry N,N-dimethylformamide (200 mL) at RT. After stirring for 15 min, di-tert-butyl iminodiacetate (II-(tBu)₂) (10.4 g, 42.5 mmol) was added and the resulting mixture was stirred at RT for 12 h. Water (20 mL) was added to the reaction mixture and the resulting mixture was concentrated and purified by solid-phase extraction on Fluoroflash silica gel, with H₂O and CH₃OH (1:4) as eluents, to give the monoamide 3 as a clear oil (14.1 g, 92 % yield) which was used in the next step without further purification. ¹H NMR (400 MHz, CDCl₃): $\delta = 4.12 \text{ (s, 6H)}, 4.10 \text{ (s, 2H)}, 4.02 \text{ (s, 2H)}, 3.92 \text{ (s, 2H)}, 3.59 \text{ (s, 2H)},$ 1.44 (s, 9H), 1.42 ppm (s, 9H); 19 F NMR (376 MHz, CDCl₃): $\delta =$ -73.29 ppm (s); ¹³C NMR (100.7 MHz, CDCl₃): $\delta = 168.7$, 167.9, 167.7, 120.1 (q, J = 293.4 Hz), 82.8, 82.0, 78.7-79.8 (m), 69.5, 67.7, 66.5,49.9, 48.6, 46.0, 27.8, 27.76 ppm; MS (MALDI-TOF) m/z 1098 $([M+Na]^+)$; HRMS (MALDI-TOF) calcd for $C_{31}H_{32}F_{27}NNaO_9$ 1098.1544, found 1098.1538.

¹⁹FIT (procedure e): A mixture of heptaamide **7** (5.5 g, 2.5 mmol) and palladium on carbon (10%, 2.5 g) in methanol (200 mL) was stirred under a hydrogen atmosphere (50 bar) over 12 h at RT. After the mixture had been filtered through a pad of celite, it was concentrated and purified by HPLC on a preparative Fluoroflash column with H₂O and CH₃OH as eluents to give the pure ¹⁹FIT as a wax (4.5 g, 97% yield). The purity of 19FIT was verified using analytical HPLC (Figure S1). ¹H NMR (400 MHz, CD₃OD) δ 4.26 (s, 2H), 4.25 (s, 8H), 4.22 (s, 2H), 4.18 (s, 2H), 4.15 (s, 2H), 4.05 (s, 2H), 4.04 (s, 2H), 3.59-3.67 (m, 42H), 3.53-3.58 (m, 16H), 3.44 (t, J=4.2 Hz, 4H), 3.38 (t, J = 5.6 Hz, 4H); ¹⁹F NMR (376 MHz, CD₃OD) $\delta = -71.05$ (s); ¹³C NMR (100.7 MHz, CD₃OD): $\delta = 172.3$, 171.9, 171.3, 171.27, 171.1, 170.8, 170.5, 121.6 (q, J = 292.5 Hz), 80.3–81.5 (m), 73.7, 71.6, 71.4, 71.2, 71.18, 71.1, 70.4, 70.3, 69.5, 68.7, 68.3, 62.2, 53.2, 53.0, 52.5, 49.7, 47.2, 40.5, 40.4; MS (MALDI-TOF) m/z 1916 ([M+Na]⁺); HRMS (MALDI-TOF) calcd for $C_{63}H_{94}F_{27}N_7NaO_{27}$ 1916.5664, found 1916.5642.

For additional synthetic procedures, as well as the MRI and metabolic studies, see the Supporting Information.

Received: February 20, 2009 Published online: May 27, 2009

Keywords: ¹⁹F MRI spectroscopy · dendrimers · imaging agents · modular symmetry · fluorine

- [1] P. C. Lauterbur, Angew. Chem. 2005, 117, 1026-1034; Angew. Chem. Int. Ed. 2005, 44, 1004-1011.
- [2] P. Mansfield, Angew. Chem. 2004, 116, 5572-5580; Angew. Chem. Int. Ed. 2004, 43, 5456-5464.
- [3] J.-X. Yu, V. D. Kodibagkar, W. Cui, R. P. Mason, Curr. Med. Chem. 2005, 12, 819–848.
- [4] W. Wolf, C. A. Presant, V. Waluch, Adv. Drug Delivery Rev. 2000, 41, 55-74.
- [5] G. N. Holland, P. A. Bottomley, W. S. Hinshaw, J. Magn. Reson. 1977, 28, 133 – 136.
- [6] P. C. Lauterbur, Nature 1973, 242, 190-191.
- [7] R. P. Mason, P. P. Antich, E. E. Babcock, J. L. Gerberich, R. L. Nunnally, Magn. Reson. Imaging 1989, 7, 475–485.
- [8] K. L. Meyer, M. J. Carvlin, B. Mukherji, H. A. Sloviter, P. M. Joseph, *Invest. Radiol.* 1992, 27, 620–627.
- [9] A. M. Morawski, P. M. Winter, X. Yu, R. W. Fuhrhop, M. J. Scott, F. Hockett, J. D. Robertson, P. J. Gaffney, G. M. Lanza, S. A. Wickline, *Magn. Reson. Med.* 2004, 52, 1255–1262.
- [10] E. T. Ahrens, R. Flores, H. Xu, P. A. Morel, *Nat. Biotechnol.* 2005, 23, 983–987.
- [11] A. M. Neubauer, J. Myerson, S. D. Caruthers, F. D. Hocket, P. M. Winter, J. Chen, P. J. Gaffney, J. D. Robertson, G. M. Lanza, S. A. Wickline, *Magn. Reson. Med.* 2008, 60, 1066 1072.
- [12] J. M. Janjic, M. Srinivas, D. K. K. Kadayakkara, E. T. Ahrens, J. Am. Chem. Soc. 2008, 130, 2832-2841.
- [13] A. Kimura, M. Narazaki, Y. Kanazawa, H. Fujiwara, *Magn. Reson. Imaging* **2004**, 22, 855–860.
- [14] Y. Nosé, Artif. Organs 2004, 28, 807-812.
- [15] J. Gore, N. Engl. J. Med. 2003, 349, 2290-2292.
- [16] J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, S. S. Gambhir, Nat. Rev. Drug Discovery 2008, 7, 591–607.
- [17] R. G. Strickley, Pharm. Res. 2004, 21, 201-230.
- [18] I. T. Horváth, J. Rábai, Science 1994, 266, 72-75.
- [19] D. P. Curran, Synlett 2001, 1488-1496.
- [20] A. V. Ratner, S. Quay, H. H. Muller, B. B. Simpson, R. Hurd, S. W. Young, *Invest. Radiol.* **1989**, 24, 224–227.
- [21] H. Lee, R. R. Price, G. E. Holburn, C. L. Partain, M. D. Adams, W. P. Catheris, *Magn. Reson. Imaging* **1994**, *4*, 609–613.
- [22] D. A. Tomalia, L. A. Reyna, S. Svenson, *Biochem. Soc. Trans.* 2007, 35, 61–67.
- [23] Z.-X. Jiang, Y. B. Yu, Tetrahedron 2007, 63, 3982-3988.
- [24] Z.-X. Jiang, Y. B. Yu, Synthesis 2008, 215-220.